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Neuropathic pain is the consequence of abnormal processing in the peripheral or central nervous 
system (CNS) elicited by neuronal injury. Due to its heterogeneous nature and important unwanted 
adverse effects of the commonly prescribed psychoactive drugs like benzodiazepines (BDZ), the 
treatment of neuropathic pain has remained a challenge for the scientific community. Flavonoids 
initially isolated from plants and used as tranquilizers in Folkloric medicine, have been reported to 
possess selective affinity for BDZ binding site. These positive ionotropic modulators of γ-amino butyric 
acid-A (GABAA) receptors enhance the chloride ion flux and provide a strong inhibitory effect. 
Therefore, for the treatment of central nervous system-related disorders such as neuropathic pain, 
these selective GABAA receptor modulators stand amongst the strongest candidates. This review 
provides an update on research development that has confirmed the activity of different flavonoids on 
GABAA receptors. 
 
Key words: Neuropathic pain, flavonoid, γ-amino butyric acid-A (GABAA) receptors, animal models neuropathy. 

 
 
INTRODUCTION 
 
Formerly, neuropathic pain was defined by International 
Association for the Study of Pain (IASP) as ―pain initiated 
or caused by a primary lesion or dysfunction of the 
nervous system‖; but recently it has been revised as 
―pain arising as a direct consequence of a lesion or 
disease affecting the somatosensory system‖ by the 
IASP neuropathic pain special interest group (NeuPSIG) 
(Treede et al., 2008). So, this pain has been primarily 
attributed to be a corollary of a disease upsetting the 
‗somatosensory system‘ rather than the ‗nervous system‘ 
in the revised definition, thus, further clarifying its origin. 
Under normal conditions, the somatosensory system is 
involved  in  the  diffusion  of  noxious  information  to  the  

central nervous system. Hence lesion of the 
somatosensory system can not only stop the innervations 
of nerve cells but can also result in pain with or without 
sensory hypersensitivity episode in the painful area 
(Jensen, 2006). 

A lesion in the somatosensory system can manifest as 
positive sensory symptoms or negative sensory 
symptoms. The negative sensory symptoms arise due to 
fractional or entire loss of input to the nervous system; 
whereas, the positive sensory symptoms arise due to 
regeneration and disinhibition of the nerve cells, as a 
result of reduced sensory input. The positive symptoms 
can      be    either    spontaneous    or    stimulus-evoked.  
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Paraesthesias (tingling or ant crawling sensations over 
the skin), spontaneous ongoing or shooting pain (stimulus 
independent) and electric shock-like sensations are 
included in spontaneous positive symptoms; whereas, 
hyperalgesia and allodynic (further classified according to 
the static and dynamic nature of the stimulus) pain are 
stimulus-evoked positive symptoms of neuropathy 
(Rasmussen et al., 2004). Negative symptoms of 
neuropathic pain includes hypoesthesia (reduced 
sensations to non-painful/innocuous stimuli), 
pallyhypoesthesia (reduced sensations to vibration), 
hypoalgesia (abridged impression to noxious stimuli) and 
thermohypoesthesia (abridged impression to cold/warm 
stimuli) (Jensen, 2006). 

Numerous controlled studies have demonstrated 
potential effectiveness of opioids, tricyclic anti-
depressants, gabapentin, pregabalin, phenytoin, 
lamotrigine, dextromethorphan, tramadol and mexiletine 
for painful sensory neuropathy (Harden, 1999; Attal, 
2001). However, these therapies result in a 30–50% 
reduction in pain and are often restricted due to significant 
side effects, with sedation being the most dominant. 
 
 
PATHOPHYSIOLOGICAL MECHANISMS OF 
NEUROPATHIC PAIN 
 
Experimental work in rodents has provided a broadened 
picture of the pathophysiological mechanisms that 
generate neuropathic pain. It involves both peripheral and 
central mechanisms. The peripheral sensitization is 
carried out via unmyelinated C- and thinly myelinated Aδ- 
primary afferent neurons that normally elicit the pain 
sensation by responding to noxious stimuli. However, the 
peripheral nerve lesions sensitize these neurons 
advancing into spontaneous activity. Moreover, these 
lesions cause dramatic changes on the cellular and 
molecular levels triggering the nerve cells (Figure 1) 
(Baron, 2006). 

An increased mRNA expression for voltage gated 
sodium channels in the primary afferent neurons is 
considered to be responsible for an ectopic spontaneous 
activity after a nerve injury. This phenomenon may result 
in the clustering of these channels that lowers the action 
potential threshold leading to hypersensitivity. Hence, 
sodium channel blockers like lidocaine produce pain relief 
in neuropathic pain via this mechanism (Lai et al., 2003). 

Up regulation of a variety of receptor proteins also 
result from peripheral nerve injury. They are present at 
the membrane of the primary afferents and are only 
slightly uttered in physiological circumstances. Vanilloid 
receptors (TRPV 1) being one of them are involved in the 
sensing of noxious heat greater than 43ºC (Patapoutian 
et al., 2003), whereas, TRPM8 receptors have been 
identified as cold and menthol-sensitive raised by 
temperature in the range of  8-28ºC.  TRPM8  receptor  is  

revealed in small diameter DRG (dorsal root ganglia) 
neurons (McKemy et al., 2002). A nerve injury may result 
in either up regulation or gating of this channel leading to 
peripheral sensitization of C-nociceptors that causes cold 
hyperalgesia (Wasner et al., 2004). 

Acid-sensing ion channels (ASCIs) are believed to be 
participating in static mechanical hyperalgesia (Price et 
al., 2001). On the other hand, α1- and α2- adrenoceptors 
located on the cutaneous afferent fibers also play a 
pronounced function in the hypersensitivity from nerve 
injury (Baron et al., 1999). Adrenergic sensitivity has 
been widely expressed in post herpetic neuralgias, 
complex regional pain syndromes II (CRPS II) and post-
traumatic neuralgias; whereas, in polyneuropathies no 
sensitivity in the primary afferent neurons has been 
reported (Uphoff and Binder, 2006). Thus, temperature-
induced and sympathetically-induced pain could be 
treated by blocking their respective receptors on 
nociceptive neurons. 

An ectopic activity is also induced by inflammation in 
both wounded and adjoining normal primary afferent 
nociceptors triggered by a nerve lesion that release 
proinflammatory cytokines, especially TNF-α (Sommer, 
2003). Deep proximal and paroxysmal pain are 
pronounced features in the patients diagnosed with 
peripheral neuropathies e.g., HIV neuropathy. Nerve 
biopsy specimens of such patient have shown an 
increased concentration of COX-2 and proinflammatory 
cytokines  (Table 1) (Lindenlaub and Sommer, 2003). 

CNS constitutes specific anatomical links with the 
spinal cord, brain stem, thalamus and the cortex. These 
connections link sensations generated in the high 
threshold primary afferents with the cortical regions of the 
central nervous system, that further process it into 
ultimate painful sensations (Woolf, 2011). The ongoing 
hyperactivity generated by injured nerves serves as a 
trigger for central sensitization and simulates activity-
dependent synaptic flexibility occurring within the cortex. 
Diverse synaptic modulators, changes in ion channel 
kinetics, excitatory amino acid, increased bulk of 
ionotropic receptors and pre- and post-synaptic activation 
of kinases are involved in central sensitization. 

Most of the patients presenting with peripheral and all 
with central neuropathy show predominant synaptic 
facilitation contributing to allodynia and hypersensitivity 
(Campbell and Meyer, 2006). Peripheral nerve injury 
causes ―pre-synaptic changes‖ including modifications in 
the synthesis of neurotransmitters, neuromodulators and 
in the density of calcium channels (Hendrich et al., 2008). 
On the contrary, increased receptor density as a result of 
enhanced synthesis of ion channels and scaffold proteins 
and phosphorylation of N-methyl-D-aspartate (NMDA) 
subunits occur because of ―post-synaptic changes‖ 
(Cheng et al., 2008). These changes also contribute to an 
abnormal expression of Nav 1.3 (Hains et al., 2004) and 
the  mitogen-activated  protein  kinase system (MAPK) (Ji  
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Figure 1. Diagram representing symptoms and mechanism of neuropathic pain with possible medical 
interventions. NA: nor adrenaline, TCA: tricyclic antidepressants; 5-HT: 5-hydroxy tryptamine; DRG: 
dorsal root ganglion. 

 
 
 
and Woolf, 2001). The role of pathologically sensitized C-
fibers which sensitizes neuropeptide substance P and 
spinal dorsal horn via glutamate release cannot be 
overlooked. The released glutamate shows an excitatory 
effect by acting upon post-synaptic NMDA leading to 
central sensitization (Ultenius et al., 2006). An 
appreciably abundant evidence reveal the involvement of 
loss of tonic GABA-conciliated inhibition and increased 
excitatory neurotransmitters resulted in an initiation of 
central sensitization, ending in peripheral hypersensitivity, 
that is, allodynia and hyperalgesia (Knabl, Witschi et al., 
2008). Once this sensitivity is developed, the usually 
innocuous tactile stimuli could activate Aδ and Aβ low 
threshold mechanoceptors (Tal and Bennett, 1994). 

ROLE OF GABA IN NEUROPATHIC PAIN 
 
In the brain, γ-amino-butyric acid (GABA) tends to be the 
most abundant inhibitory neurotransmitter regulating 
different physiological characters like sleep, anxiety, 
memory formation, reward, etc (Zeilhofer et al., 2009) 
and also control the action of excitatory neurons in the 
CNS, facilitating a uniform flow of information and 
therefore, maintaining the homeostasis of neural circuits. 
Melzack and Wall (1967) previously reported the role of 
inhibitory neurons in the spinal dorsal horn involved in 
controlling pain transmission from the periphery to higher 
levels of the brain (Melzack and Wall, 1967). Later on, 
GABA  was confirmed to be one of the foremost inhibitory  
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Table 1. Currently available treatment options for neuropathic pain with mechanism, side effects, other benefits, precautions and doses. 
 

Class Drugs Mechanism of action Side effects 
Other 
benefits 

Precautions Doses 

Tricyclic 
antidepressants 

Nortriptyline Norepinephrine and 
serotonin reuptake 
inhibition, 
anticholinergic and 
sodium channels 
blockade. 

Sedation, 
anticholinergic 
effects. 

Abolish 
depression 
and sleep 
disturbanc. 

Glaucoma, cardiac 
disease, seizure 
disorders. 

25 mg at bedtime/ 150 
mg daily. Desipramine 

Calcium channel 
α2-δ ligands 

Gabapentin Decrease release of 
glutamate, NE, etc. via 
α2-delta subunit 
voltage gated calcium 
channel. 

Sedation, 
peripheral edema, 
dizziness. 

No significant 
drug 
interactions. 

Renal insufficiency. 

Gabapentin: 100-300 
mg once or t.i.d/ 1200 
mg t.i.d. 

Pregabalin: 50 mg t.i.d 
or 75 mg t.i.d. 

Pregabalin 

SSNRIs 

Duloxetine 
Norepinephrine and 
serotonin reuptake 
inhibition. 

Nausea 
Improve 
depression 

Hepatic dysfunction, 
alcohol abuse, 
tramadol. 

Duloxetine: 30 mg 
once daily/ 60 mg t.i.d. 

Venlafexine: 37.5 mg 
once daily. 

Venlafexine 

Topical lidocaine 
5% lidocaine 
patch 

Sodium channel 
blockade. 

Erythema, rash. None None 1 to 3 patches per day. 

Opioid agonists 

Morphine 

µ-receptor agonists 
Nausea vomiting, 
dizziness, 
constipation 

Rapid onset of 
analgesia 

Substance abuse, 
driving impairment, 
suicide risk. 

Morphine:10-15 mg 
every 4 h. 

 

Oxycodone 

Methadone 

Tramadol 

µ-receptor agonist, 
Norepinephrine and 
serotonin reuptake 
inhibition. 

Same Same 

Same, serotonin 
syndrome if used in 
combination with 
TCA. 

50 mg once daily or 
t.i.d/ 400 mg daily as 
long-acting drug. 

 
 
 
neurotransmitters in the spinal dorsal horn (Yaksh, 1989). 

After release from the pre-synaptic neurons, GABA act 
postsynaptically upon 3 major classes of receptors 
namely; GABAA and GABAC receptors that are ligand-
gated ion channels and GABAB that are G protein-
coupled channels (Gavande et al., 2011). Chemically 
ionotropic GABAA receptors are formed of 
transmembrane protein complexes and comprise 5 
heteropentameric subunits. In the human brain, α1β2γ2 
subunit is considered to be the most dominant one 
(Wafford, 2005). Upon activation by GABA, the 
membrane permeability to chloride and carbonate ions 
increases causing a net inward flow of anions and a 
consequent hyperpolarization. This hyperpolarizing post-
synaptic response is termed as inhibitory post-synaptic 
potential (Semyanov et al., 2003).  

Physiologically, GABA-releasing interneurons, imposes 
a strong inhibitory control over the dorsal horn neurons. 
The loss of these neurons could further increase the 
central sensitization, e.g. as reported in partial peripheral 
nerve injury models, in which the injury resulted in the 
reduced spinal GABA release along with decreased 
GABA-synthesizing enzyme glutamic acid decarboxylase 
in rodents (Moore et al., 2002), advancing into 
spontaneous  pain   and  hyperexcitability  manifested  as  

allodynia and hyperalgesia. 
In diseased states, an increased excitation occurs that 

is attributed to either a massive loss of GABAergic 
interneurons or deterioration of interneurons as 
consequence of depletion of their sensory excitatory 
inputs or receptors. This imbalance could culminate into 
many neurological and psychiatric disorders including 
epilepsy, schizophrenia, neuropathic pain, Alzheimer‘s 
(AD) and Parkinson‘s disease (PD) (Tyson and Anderson 
2014). 

Hence, the collaborative function of excitatory and 
inhibitory neurons plays a vital role in controlling various 
brain activities. 

As discussed earlier, central and peripheral 
sensitization due to nerve injury could result in complex 
neuropathic pain. Besides other mechanisms, the loss of 
GABAergic interneurons is now considered to be one of 
the major contributor to such persistent pain states (Bráz 
et al., 2012). Recent evidence suggest that the deletion 
of particular GABA subunits or pharmacological blockade 
of GABAergic neurotransmission in the spinal cord 
resulted in hyperalgesia and allodynia (Gwak et al., 2006; 
Jergova et al., 2012). Similarly, electrophysiological 
studies have revealed that GABAA receptor inhibition 
could  induce  an  embellished  behavioral  reaction  to an 
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Figure 2. Diagram representing animal models of neuropathic pain. SNT: 
spinal nerve transaction; PSNL: partial sciatic nerve ligation; CCI: chronic 
constriction injury; SNL: spinal nerve ligation and PDN: peripheral diabetic 
neuropathy.  

 
 
 

innocuous mechanical stimulus (Hwang and Yaksh, 
1997), consistent with the reported high levels of 
GABAergic receptors in the dorsal horn (Persohn et al., 
1991). Moreover, the impaired GABAergic system in the 
animals presenting with chronic neuropathic pain propose 
the practical link between such pain and spinal inhibitory 
neurotransmission (Figure 2) (Zeilhofer, 2008). Therefore, 
restoration of spinal inhibitory neurotransmission can be 
a valuable pharmacological advancement in the treatment 
of neuropathic pain. 

GABAA receptor  agonists related antinociceptive effect  

has been attributed to the stimulation or blockade of other 
neurotransmitters as well (McCarson and Enna, 2014). 
Furthermore, the role of central GABA in opioid-mediated 
antinociception is well documented (Ossipov et al., 2010). 
Thus, GABA receptor agonists may play a vital role in 
treating acute and chronic pain (McCarson and Enna, 
2014).  

In this regard, GABAA receptor agonists muscimol and 
isoguvacine are reported to reverse nerve injury-induced 
tactile allodynia (Hwang and Yaksh, 1997). These 
receptors   are   closely   linked   to   the   large   diameter 



 

 

  
 
 
 
Table 2. Classification of flavonoids. 
 

Class of flavonoids Example 

Flavanol 
Kaempferol,Quercetin, 
Myricetin  

Flavanone Hesperetin, Naringenin 

Flavone Luteolin, Apigenin 

Flavans Catechin, Epicatechin 

Isoflavone Genistein, Daidzein 

Anthocyanidin Cyanidin, Delphinidin 

Aurones Leptosidin, Auresidin 

Neoflavonoid Coutaregenin, Dalbergin 

Flavonoid glycosides Astragalin, Apigenin 

Flavonolignan Silibinin 
 

Adopted from Peterson and Dwyer (1998). 

 
 
 

afferents involved in innocuous sensation (Price et al., 
1984; Sivilotti and Woolf, 1994; Reeve et al., 1998; Ataka 
et al., 2000; Riley et al., 2001; Turner, 2003). Great body 
of evidence suggests that a decreased spinal GABA 
plays a vital role in inducing and maintaining neuropathic 
pain. Behavioral and pharmacological studies have 
shown that a continuous or single intrathecal dose of 
GABA to the spinal cord or the implantation of GABA 
releasing cells decrease the signs of neuropathic pain 
(Eaton et al., 1998, 1999; Stubley et al., 2001; Malan et 
al., 2002). Moreover, blocking the spinal GABAA 
receptors results in aggravating peripheral nerve injury 
associated hyperalgesia (Yamamoto and Yaksh, 1993). 

On the contrary, benzodiazepines, and positive 
allosteric modulators at GABAA receptors are widely used 
drugs not only in anxiety, convulsions and sleep 
disorders but also as analgesic if administered 
intrathecally (Tucker et al., 2004). Despite its analgesic 
potential, its use in pain relief is restricted due to the 
myriad effects like sedation. Hence, there is an increased 
need of research in the field of GABAergic modulators 
that could play a pronounced role in the attenuation of 
neuropathic pain. 
 
 

FLAVONOIDS 
 
Flavonoids are widely distributed in vegetables, grains, 
fruits, barks, roots, flowers, stems, tea, etc. Chemically, 
they are polyphenolic compounds comprising of a 
diphenyl propane skeleton (C-6-C-3-C-6), with two 
aromatic rings and an oxygen-containing heterocyclic 
benzopyran ring, labeled as fused aromatic ring A, the 
benzopyran ring adjacent to A is ring C and a phenyl ring 
B (Middleton, 1998). 

Long before the isolation of flavonoids, the natural 
products bearing them were known for their healthful 
effects. The decreased mortality rate associated with  the  
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use of red wine (constitute flavonoids) was observed in 
Mediterranean populations that produced an inclination in 
the flavonoid research, that was further confirmed by 
epidemiological studies, portraying the cardio protective 
role of dietary flavonoids in coronary heart disease 
(Formica and Regelson, 1995; Groot and Rauen, 1998). 

Similarly, a new substance isolated from oranges in 
1930, was thought to be a vitamin and was called vitamin 
P, which was later on confirmed to be a flavonoid, that is, 
rutin which led to an increase in the isolation and study of 
the mechanisms of various individual flavonoids. A long 
history of plant species exists that constitute flavonoids 
and exhibit CNS effects and were used as folk medicines 
in Europe. Feverfew (Tanacetum parthenium L. 
Asteraceae) was used as prophylactic agent in migraine 
and Chamomile flowers (Matricaria recutica L. 
Asteraceae) as a tranquillizer for centuries, with both 
found to be containing apigenin as an active constituent 
via bioassay-guided fractionation studies (Jäger et al., 
2009). Furthermore, Linden flowers (Tilia sp. Tiliaceae) 
were known for their sedative effects and Heather 
(Calluna vulgaris [L] Hull. Ericaceae) as nerve calming 
remedy, with both shown to have quercetin and 
kaempferol flavonoids as active components (Aguirre-
Hernández et al., 2010). 

Flavonoids can be categorized into ten groups (Table 
2) (Peterson and Dwyer, 1998). Flavone, isoflavone and 
flavanol contains a double bond in the ring C, making the 
fused A-C ring system planar, whereas, the other classes  
lack this double bond and instead have C2 and C3 chiral 
centers that are located at each end of the plane ring A 
(Figure 3) (Jager and Saaby, 2011). Besides the isolation 
of natural flavonoids, various semi-synthetic and synthetic 
derivatives have been synthesized and screened for their 
therapeutic potential (Cushnie and Lamb, 2005). 
In plants, flavonoids not only provide UV-protection but 
also aid in the pollination by masking the flowers with 
attractive colors and patterns. Until now, more than 6000 
varieties of flavonoids have been isolated. A variety of 
interest gasping pharmacological actions for these 
naturally occurring flavonoid compounds as well as 
synthetic derivatives have been found (Vidyalakshmi et 
al., 2010), including both peripheral and central nervous 
system effects (Figure 4) (Hall et al., 2005). These 
compounds attribute to a vast range of biological effects, 
like anticancer (Liu et al., 2010), anti-inflammatory (Wang 
et al., 2010), antioxidant (Heim et al., 2002), anxiolytic 
(Ognibene et al., 2008), cardio protective (Yu et al., 
2005), antifungal (Ammar et al., 2013), antiviral (Orhan et 
al., 2010), antimicrobial (Cushnie and Lamb, 2005), 
neuroprotective (Cho et al., 2013) and  antinociceptive 
activities (Wang et al., 2014). 
 
 

FLAVONOIDS AS GABAA RECEPTOR MODULATORS 
 

Flavonoids   have   been   extensively   focused   for  their 
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Figure 3. Diagram representing chemical structures of basic flavonoid nucleus and the 
common subgroups. 

 
 
 
peripheral events; however, more recently their selective 
affinity for GABAA receptors has been reported in studies 
using rat and bovine brain membrane binding assays 
(Hong and Hopfinger, 2003). In conjunction with binding 
studies, many behavioral studies have also been carried 
out, which indicate the anxiolytic effects of flavonoids in 
rodent anxiety models lacking many of the surplus side 
effects of BDZs (benzodiazepines) (Griebel et al., 1999). 
Interestingly, the positive, negative and neutralizing 
allosteric modulatory actions of flavonoids over a wide 
range of ionotropic  GABA  receptors  has  been  focused  

and strongly supported via a large bulk of evidence. 
The isolation of isoflavones from bovine urine that 

displaced 3[H]-diazepam binding in rat brain laid the 
foundation of the interaction of flavonoids with BDZ 
receptors (Luk et al., 1983). In 1990s, flavonoids were 
defined as a new family of BDZ receptor ligands (Medina 
et al., 1997; Marder and Paladini, 2002). Classically, they 
were considered to be acting upon BDZ receptors and a 
number of synthetic flavonoids having a significant affinity 
for BDZ binding site were developed accordingly (Yao et 
al., 2007);  until  they  were  reported  to  be insensitive to 
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Figure 4. Diagram representing pharmacological effects along with mechanism of action and examples of 
different natural and synthetic flavonoids. 

 
 
 
flumazenil that is BDZ receptor antagonist, thus 
highlighting a unique site of action for this class 
(Hanrahan et al., 2011). 

The substitution at 6- or 3‘-positions of flavones with an 
electronegative functional group enhanced the affinity 
towards the BDZ receptors (Paladini et al., 1999). 
Furthermore, the impact of ligand binding on the GABA 
binding was used to determine the GABA ratios. These 
ratios showed that flavones exhibited significant 
biological activities at BDZ receptors (Hanrahan et al., 
2011). 6-Bromoflavone, 6-bromo-3‘-nitroflavone and 6-
chloro-3‘-nitroflavone with a GABA ratio of 1.6-2.0, 1.38 
and 2.0 were reported as full agonist (Marder et al., 
1996), partial agonist (Wolfman et al., 1998) and an 
antagonist (Viola et al., 2000) at these receptors. 

Positive ionotropic modulators of GABAA receptors 
enhance the chloride ion flux and provide a strong 
inhibitory effect. Therefore, for the  management  of  CNS 

– allied diseases, including panic disorders, generalized 
anxiety, seizure disorders, muscle spasm, neuropathic 
pain and sleep disturbances; these modulators stand 
amongst the strongest candidates (Rudolph and Möhler, 
2006). Moreover, with the discovery of the fact that 
flavonoids may act upon novel binding sites other than 
the classical benzodiazepine binding site, opportunities to 
search for new therapeutic agents with less adverse 
effects has been provided (Rudolph and Möhler, 2006). 
In this regard, 6-Methoxyflavonone has been reported to 
act as positive allosteric modulator at α1β2γ2L and 
α2β2γ2L subunits of GABAA receptors (Hall et al., 2014). 

The substitution at 6-position on flavones is related to 
its effects on the recombinant GABAA receptors. 6-
Hydroxyflavone depicted a significant effect at flumazenil-
sensitive BDZ site (Ren et al., 2010). Moreover, 6-
methoxyflavanone and 6-methoxyflavone have been 
recently   reported   to   exhibit   significant   anti-allodynic  
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effects in streptozotocin- and cisplatin-induced 
neuropathic pain models (Akbar et al., 2016; Shahid et 
al., 2017). These protective effects against neuropathic 
pain were attributed to the positive allosteric modulatory 
effects of these molecules on opioid and GABAA 

receptors respectively (Akbar et al., 2016). 
Moreover, myrcitin and baicalin produced significant 

anti allodynic effects in sciatic nerve ligation models 
(Meotti et al., 2006; Cherng et al., 2014). Rutin and 
quercetin has been reported to inhibit oxaliplatin-induced 
chronic painful peripheral neuropathy (Azevedo et al., 
2013). Naringin is also reported as exhibiting anti 
allodynic potential in the sreptozotocin-induced painful 
diabetic neuropathy (Kandhare et al., 2012). 
 
 
OTHER NEUROPATHIC PAIN MODULATING 
MECHANISMS OF FLAVONOIDS 
 
Besides its action on the GABAA receptors, flavonoids 
also exert antioxidant and anti-inflammatory effects. 
Almost all metabolic diseases are the consequence of 
oxidative stress. In addition to exogenous damage, the 
normal oxygen metabolism within the cells and tissues 
produce free radicals and reactive oxygen species that 
consistently endanger them. Flavonoids are very well 
known for their antioxidant potential and are proven to 
exert positive effects in diseases like atherosclerosis, 
diabetes, Alzheimer‘s disease, cancer, etc (De Groot, 
1994; Pal and Verma, 2013). 

Although the underlying set of events behind the 
damage caused by the free radicals to the cellular 
functions is not fully understood, the contribution of lipid 
per oxidation leading to cellular membrane destruction 
and activation of inflammatory mediators by the free 
radicals culminating in ultimate tissue damage, can 
provide a lot of help in conceiving a pharmacological 
target. Nature has provided an inborn mechanism against 
these ROS, comprising of enzymes like superoxidase, 
glutathione peroxidase and catalase as well as non-
enzymatic elements e.g. ascorbic acid, α-tochopherol, etc 
(Halliwell, 1995). However, these endogenous 
scavenging compounds are prone to depletion due to an 
increased oxidative stress caused by many diseased 
states including conditions that culminate in neuropathic 
pain e.g. diabetes mellitus (Schreiber et al., 2015). 

Epicatechin and rutin are shown to have the ability to 
be oxidized themselves by the free radicals giving rise to 
a stable and less reactive species (Hanasaki et al., 
1994). Similarly, quercetin inhibits the nitric oxide (NO) 
induced cell injury. Nitric oxide combines with the free 
radicals and produces an extremely harmful peroxynitrite 
that straightly oxidize LDL leading to a permanent 
destruction of the cell membrane. Hence, quercetin 
scavenge the free radicals, restraining them from reacting 
with NO (Shutenko et al., 1999), while silibin react directly  

 
 
 
 
with NO (Dehmlow et al., 1996). 

Physiologically, the metabolism of xanthine to uric acid 
is carried out via xanthine dehydrogenase; however, in 
case of ischemic-reperfusion this enzyme changes into 
xanthine oxidase that acts as precursor of free radicals. 
Quercetin, luteolin and silibin flavonoids are known to act 
as antioxidant via inhibiting xanthine oxidase (Chang et 
al., 1992; Shoskes, 1998). 

Similarly, reperfusion also results in the mobilization of 
leucocytes causing the consequent release of 
inflammatory mediators and cytotoxic oxidants provoking 
the complement system. A number of flavonoids are 
reportedly involved in the leucocytes immobilization 
ultimately causing a reduction in the serum complement 
system and inflammation (Friesenecker and Tsai, 1995; 
Ferrándiz et al., 1996). A pronounced body of evidence 
report the involvement of same pathophysiological 
mechanisms behind both inflammation and neuropathic 
pain of peripheral origin. Both types of pathologies 
manifest as allodynia and hyperalgesia (Clatworthy et al., 
1995; DeLeo and Yezierski, 2001; Jin et al., 2003). 
Infiltration of inflammatory cells and their secretary 
products like arachidonic acid and cytokines (released for 
nerve regeneration) as a result of peripheral nerve injury 
is responsible for the generation and maintenance of the 
ongoing pain (Tracey and Walker, 1995; Cui et al., 2000; 
Ma and Eisenach, 2003). Cytokines like tumor necrosis 
factor-α (TNF-α), interleukin-1 (IL-1) and interleukin-6 (IL-
6) when injected into the rat paw resulted in the induction 
of mechanical and thermal hyperalgesia (Cunha et al., 
1992; Ferreira et al., 1993). The blockage of TNF–α in 
the rodent models of painful neuropathy has resulted in 
the attenuation of hyperalgesia (Sommer et al., 1998). 
Cytokines once released induce their own production and 
consequently activate COX–2 dependent prostanoid 
releases. The role of PGs in inducing inflammation 
accompanying enhanced sensitivity to pain is well 
documented. Intrathecal administration of PGs including 
PGE2 and PGF2α induced allodynia in conscious mice 
(Minami et al., 1992, 1994), whereas intrathecal injection 
of PGD2 and PGE2 resulted in the induction of 
hyperalgesia (Uda et al., 1990). Moreover, synthesis of 
PG and nitric oxide (NO) via COX-2 and inducible nitric 
oxide synthase (iNOS) is enhanced in the microglia as a 
result of peripheral nerve injury leading to hyper 
sensitization (Hanisch, 2002). Flavonoids exhibit an in 
vivo and in vitro anti-inflammatory activity. The in vivo 
anti-inflammatory is attributed to the inhibition of 
ecosanoid generating enzymes including COX, LOX and 
phospholipase A2 (Kim et al., 2004). 

Flavonoids are known to act upon different enzyme 
systems, e.g. causes the inhibition of arachidonic acid 
and blocking the inflammatory response as arachidonic 
acid tends to start it. By this, antithrombotic and anti-
inflammatory features are incorporated into the group 
(Ferrandiz and Alcaraz, 1991). They also cause decrease  



 

 

 
 
 
 
in the release of peroxidase and inhibition of ROS 
production by neutrophils. This inhibition is carried out via 
interference with α1-antitrypsin activation (Middleton and 
Kandaswami, 1992). Certain flavonoids are involved in 
iron chelation that causes lipid peroxidation, thereby 
abolishing an erratic factor for the free radicals 
development (Nelson et al., 1992; Ferrali et al., 1997). 
 
 
CONCLUSION 
 
Allosteric modulators at GABAA receptors modify either 
the efficacy or affinity of agonists like GABA, consequently 
regulating their activity. Over the last decade, these 
modulators have been focused extensively due to the 
advances in the understanding of the functions of GABAA 
receptor subtypes. Flavonoids being potent allosteric 
modulators may prove to be useful tools in the 
amelioration of such distressing painful conditions like 
neuropathic pain. However more studies are required to 
further elucidate the site of action of these bioactive 
molecules over the GABAA receptors. 
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AD, Alzheimer‘s disease; ASCIs, acid-sensing ions 
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system; COX-2, Cycloxygenase-2; CRPS II, Complex 
Regional Pain Syndrome II; DRG, dorsal root ganglion; 
GABA, γ-amino butyric acid; IASP, International 
Association for the Study of Pain; ISSVD, International 
Society for the Study of Vaginal Disease; MAPK, 
mitogen-activated protein kinase; NeuPSIG, Neuropathic 
Pain Special Interest Group; NMDA, N-methyl-D-
aspartate; PD, Parkinson‘s disease; TNF-α, tumor 
necrosis factor- α; TRPV, transient receptor potential. 
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This study aims to investigate the anti-hyperglicemic effects of yacon leaf (Smallanthus sonchifolius) 
using zebrafish. In this study, zebrafish is used as a model, with alloxan compounds to induce 
hyperglicemic. The induction stage consists of 3 phases: in the first the zebra was induced at 0.3% for 
30 min, in the second stage, it was transferred to a 3% D-glucose solution for 30 min, and in the last, 
immersion was carried out in a solution containing yacon leaf extract with doses of 20, 30 and 40 mg/ml 
for 3 h in 3 consecutive days.The results showed that yacon leaf extract in doses of  20, 30 and 40 mg 
were able to reduce blood glucose levels in zebrafish induced by alloxan.The results indicated that 95% 
ethanolic extract has an antidiabetic effect. 
 
Key words: Yacon leaf (Smallanthus sonchifolius), zebrafish, alloxan. 

 
 
INTRODUCTION 
 
Diabetes mellitus affects a large percentage of the 
world’s population, significantly altering their quality of life 
(Lawrence et al., 2008). The definition of diabetes 
mellitus is a metabolic disease caused by a lack of insulin 
production or inability of the body to respond to insulin 
(Stumwoll et al., 2005). 

The World Health Organization (WHO) predicts an 
increase in the number of populations living with diabetes 
mellitus, considering it a global health threat (WHO, 
2016). In Indonesia, it is estimated to rise from 8.4 million 
in 2000 to 21.3 million by 2030, with a staggering 
increase of 2-3 times that by 2035 (Wild et al., 2004). 
Meanwhile, the International Diabetes Federation (IDF, 
2015) predicts an increase of 9.1 million in  2014  with  an  

expected 14.1 million by 2035 (IDF, 2015).A natural 
ingredient found in Indonesia and capable of reducing 
blood glucose levels is the yacon (Smallanthus 
sonchifolius) plant. In a study conducted by Genta et al. 
(2010), it was found that a decrease in blood glucose 
levels from the extract was caused by caffeonylquinic, 
caffeic and chlorogenic compounds. In addition, enhydrin 
and sesquiterpenic lactone in the leaves are effective for 
reducing post-prandial glucose and is useful in the 
treatment of animal diabetes (minimum dose: 0.8 mg / kg 
body weight). According to research conducted by Dou et 
al. regarding chemical compounds from Smallanthus 
sonchifolius, a structure of new compounds were 
identified   that   are  as  efficacious  as  diabetes  agents, 
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Figure 1. Blood glucose levels on alloxan solution concentration. The 
zebrafish were exposed to various alloxan concentrations in half saline 
solution; 40 mg/100 ml (40 mg), 120 mg/100 ml (120mg), 300 mg/100 ml (300 
mg), or 400 mg/100 ml (400 mg) for 30 min, moved to a 1% water glucose 
solution in water for 30 min, and then exposed to water for 1 h. After induction, 
blood glucose levels were measured; *p < 0.05. 

 
 
 

namely ent-Kaurane-3β,16β, 17,19-tertol, ent-Kaurane- 
16 β, 17,18,19-tertol, ent Kaurane-3β, 16β, 17-triol, ent-
Kaurane-16β, 17-diol-19-oic acid, ent-Kauran-6β, 17,18-
triol and 1-Pentacosanol (Dou et al., 2010). 

The yacon leaves contain fructooligosaccharide, 
carbohydrates, and flavonoids which can reduce glucose 
levels in blood and effectively transport components of 
phenol and caffeonylquinic which inhibit glucosidase 
(Djamil et al., 2014). Baroni et al. (2008) found that the 
crude extract of yacon leaves significantly reduced blood 
glucose levels of diabetic rats in the experimental model 
induced by STZ. Most of the available models are rodent-
based, which have drawbacks in that they are labour 
intensive and because of ethical issues, only small 
groups of animals can be used. To overcome these 
limitations, the zebrafish (Danio rerio) has been 
increasingly used to study diabetes and its related 
diseases, chosen because of the high similarities in 
organ physiology and metabolism between zebrafish and 
mammals (Zhang et al., 2017). 

Zebrafish is an excellent model when compared to 
rodents in understanding the conditions and pathology of 
vertebrates (Zhang et al., 2018). Used in previous studies 
and induced by alloxan monohydrate at a dose of 300 mg 
and glucose 1%, considerable damage to the pancreatic 
Langerhans cells, causing diabetes was observed (Shin, 
2012). This study aims to determine the effect of 95% 
ethanolic extracts of yacon leaves (Smallanthus 
sonchifolius) on the production of insulin using the 
zebrafish model. The development of zebrafish-based 
antidiabetes compound screening is founded on the 
discovery of marked similarities, which justify  the  use  of  

the fish to screen antidiabetic compounds. 
 
 

MATERIALS AND METHODS 
 

Animal experimentals 
 

The experimental animals used in this study were black striped 
zebrafish weighing180-220 mg, obtained from Bogor Agricultural 
University, Bogor, West Java and were used after ethical approval.  
100 zebrafish were divided into 10 tails per aquarium used during 
acclimatization and were fed at 4% per tail daily (Kinkel and Prince, 
2009). Fish were fed twice daily, at 10 am with gelatin containing 
shrimp as described below and at 4 pm with Zeigler Adult Diet 
(Aquatic Habitats). Aerators were installed, to provide oxygen, and 
to prevent stress and death. Specific conditions were necessary, 
including approximately 10 h of darkness for rest periods, made by 
covering a tank with a trash bag. However, zebrafish activities 
required approximately 14 h of bright lighting, with an optimum 
temperature of 28.5 (Zhang et al., 2017). After acclimatization, they 
were chosen on the basis of activity levels and weighed (220-260 
mg). The zebrafish were divided into 6 groups, with each consisting 
of 10 randomly picked tails, and given treatment for 3 days. Group 
1 is a normal control, without any treatment, Group 2 a negative 
control with 3% alloxan monohydrate, hyperglycemic, D-glucose, 
and treated water induced. Group 3 is a positive control and was 
given liquid containing metformin. Positive control was comparison; 
Group 4 with the administration of 20 mg dosage of yacon leaves 
ethanolic extracts; Group 5, with the administration of 30 mg 
dosage of ethanolic extracts; Group 6, with the administration of 40 
mg dosage of ethanolic extracts.  

The zebrafish were exposed to various alloxan concentration in 
half saline solution; 40 mg/100 ml (40 mg), 120 mg/100 ml (120 
mg), 300 mg/100 ml (300 mg) and 400 mg/100 ml (400 mg) for 3 
days. After induction, blood glucose levels were measured as 
shown in Figure 1. To optimize alloxan levels on the zebrafish, 
alloxan doses of 40, 120, 300 and 400 mg were used.  300 mg / 
100 ml dosage was  the  most  optimal  as blood glucose levels had  
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Figure 2. Process for antidiabetic assay with 
Zebrafishmodel. 

 
 
 
reached 300.45-378.34 mg / dl and all exposed zebrafishes did not 
die.The dosage of 400 mg / 100 ml blood glucose levels could 
reach levels of 400.34-456.67  mg / dl, and therefore, more than 
50% of the Zebrafish died. The diabetic zebrafish model induced 
with only water glucose is required for a longer time compared to 
the model induced with alloxan. 

Changes in the body weight before and after diabetogenic 
induction is shown in Figure 3. The zebrafish were also weighed to 
determine the amount of feed to be offered daily. This is used to 
maintain control variables and identify the differences between the 
administration of metformin and 95% ethanol extract of yacon 
leaves. 
 
 
Antidiabetic activation test 
 
The selection of the dosage of yacon leaf extract was carried out 
after optimization; a dose of 20, 30 and 40 mg was given for 3 days 
after the hyperglycemic induction, and the zebrafish blood glucose 
levels were measured (Figure 2). 
 
 
Statistic analysis 
 
Glucose level data obtained from each treatment group was tested 
for normality and homogeneity. If the data are normally distributed 
and   homogeneous,  parametric  statistical  tests  were  carried  out  
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using one-way analysis of variance (ANOVA). If the results showed 
a significant difference, the analysis was then followed by the Tukey 
Post Hoc test to see the variations in each group at a significance 
level of 0.05%.  
 
 

RESULTS AND DISCUSSION  
 

The data before the acclimatization initially showed non-
uniform results; however, afterwards they gained weight 
and were broadly uniform. This may be a result of food 
factors, given everyday for 7 days. After the induced 
hyperglycemic, the zebrafish lost weight. This is because 
weight loss is one of the typical symptoms of metabolic 
disorders, experienced by patients with diabetes mellitus, 
despite having very good appetite (Zhang et al., 2017).  
The zebrafish lost weight because their energy needs 
were not met from glucose metabolism because of the fat 
and protein overhaul. This condition is caused by 
pancreatic β cell damage after being induced by alloxan, 
leading to a decrease in the production of in the body, 
causing glucose to not binding to insulin to produce 
energy (Zhang et al., 2018; Capiotti et al., 2014). 

Figure 4 highlights the blood glucose levels of the 
normal, diabetic group, positive controls, and 
administration of yacon leaf extract in 20, 30 and 40 mg 
dosages. It can be seen that there is a decrease in blood 
glucose levels by to day 3 in the positive control with 
yacon leaf extract dosages of 20, 30, and 40 mg. The 
measurement of blood glucose level of the yacon leaf 
ethanol extract shows that the higher the dose of ethanol 
extract, the higher the rate at which blood glucose levels 
are decreasing in zebrafish. 

In the positive control group, metformin had a better 
decrease in activity because it can reduce more blood 
glucose levels of zebrafish than the 3 groups of dosages 
of 95% ethanolic extracts. In another study, the 
antidiabetic effects of yacon leaf extract were investigated 
using rat animals induced with streptozotocin. Animal 
models type 1 diabetes mellitus was caused by the loss 
of pancreatic β- cells resulting in reduced insulin 
production (Kinkel and Prince, 2009). An alloxan-induced 
acute hyperglycemia zebrafish model of type 1 diabetes 
lead to the generation of a destroyed pancreas. This 
model is a mild acute hyperglycemia model for short-term 
experimentation; therefore, further  research  is  needed  
to develop a permanent model (Kinkel and Prince, 2009). 

Based on the results, the hyperglycemic induction with 
0.3% alloxan monohydrate using the immersion method 
with 3% D-glucose and aquadest, damaged the 
pancreatic β cells of the zebrafish, resulting in reduced 
insulin production in the body, and high glucose in the 
blood. Glucose in zebrafish bodies could not bind to 
insulin and glucose levels in normal controls do not 
change the condition of hyperglycemia from day 1 to 3. 
This is due to an increase in blood glucose levels by 
zebrafish   treated   with  alloxan  induction  and  glucose,  
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Figure 3. Body weight of the zebrafish before and after induction.  

 
 
 

 
 

Figure 4.  Average of  blood glucose of treated zebrafish (Day 1, 2 and 3 treatment time with 
yacon dose 20 mg/100 ml (Yc20), yacon dose 40 mg/100 ml (Yc40), yacon dosen 80 mg/100 ml 
(Yc80) and with metformine (control), diabetes (negative) and normal). 

 
 
 
resulting in an inability to regulate insulin. This led to the 
destruction of pancreatic β cells which could be seen by 
increased blood glucose levels of zebrafish. Overall, 
these data indicated that zebrafish could be induced to 
the develop mild and stable hyperglycemia and this 
model was appopriate for these experiments (WHO, 
2016). A significant advantage of using zebrafish for 
diabetes research is that hyperglycemic can be induced 
by simply adding glucose to the fish water. In contrast, 
rodent models of diabetes typically require the injection of 
the toxic glucose analogue, streptozotocin or alloxan, 
which preferiantally kill pancreatic β cells (Dou et al., 
2010). 
 
 
Conclusion 
 
The results of this study indicated that yacon leaf ethanol 
extract could reduce blood glucose levels with  a  dosage 

of 40 mg.  The research showed that an active compound 
isolated from yacon leaf extract had an antidiabetic effect. 
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